Astrophysics (Index)About

binary star

(binary, binary system)
(system of two stars co-orbiting)

A binary star is a pair of stars that orbit each other. Double star means the same thing except that it also includes stars that are not orbiting and not close together but happen to be on the same line of sight from Earth, referred to as apparent binary or optical double stars. A star's binary companion is a star with which it shares such an orbit. A higher-order multiple star system has three or more stars and the terms multiple star system and multiple star are sometimes used with that meaning, but often meant to include binary stars as well.

Binary (or more) star systems are said to be common: the most convincingly cited number I've found is that roughly third of all star systems have two or more stars. They are extremely useful in the study of stellar physics, both to use the orbital dynamics for stellar parameter determination, and for those close enough to interact further, giving additional situations to observe, to infer and test the physics of stellar structure. Their radial velocities' are sometimes both determinable, yielding their mass ratio (μ, the ratio of the two masses, i.e., 1 for stars of equal mass). In cases where the total mass can also be determined, e.g., from the orbital period and radius, the mass of each star is evident.

The commonly-used system for designating the individual stars of a binary/multiple star system consists of adding letters to the star system's designator, with letter "A" for the brightest, "B" for the second brightest, then "C" and so on. For example, the two stars making up Sirius are termed "Sirius A" and "Sirius B". If two are very close and a third is distant, the two close stars might use lower-case suffixes, i.e., "Aa" and "Ab", with the further member called "B".

Binary stars generally have similar composition (as shown by their spectra), as if they were formed together. Binaries formed together are known as primordial binaries, another sign being aligned rotation axes. A capture requires the coincidence of stars passing close to each other, plus something to change their velocity, such as a third star, or with just two, tidal forces between them (i.e., tidal-capture binaries). The "close pass" is more likely in areas with a very high density of stars such as the center of globular clusters or galaxies. Simulations have suggested that tidal capture binaries are often the result of an exchange between a single star and an existing binary resulting in the single star becoming a binary companion, with the replaced binary companion becoming a single star.

A common classification of binary stars is based on the method by which they were determined to be binary:

Another set of classes is based upon how close they are and how much they interact:

Given these possibilities as well as the different sizes/spectral types of the individual stars, binary stars show a wide variety and interactions between them produce characteristics unseen in non-binary stars. For example:


(star type,binary stars,double stars)
Further reading:
https://en.wikipedia.org/wiki/Binary_star
https://astronomy.swin.edu.au/cosmos/b/binary+star
http://hyperphysics.phy-astr.gsu.edu/hbase/Starlog/bistar.html
https://www.daviddarling.info/encyclopedia/B/binarystar.html
http://www.physics.usyd.edu.au/~helenj/LS/LSx-binaries.pdf
https://sites.ualberta.ca/~pogosyan/teaching/ASTRO_122/lect13/lecture13.html
https://www.atnf.csiro.au/outreach/education/senior/astrophysics/binary_intro.html

Referenced by pages:
accretion
accretion disk
Aitken Double Star Catalogue (ADS)
ALMA-PILS Survey
Alpha Centauri (α Centauri)
astrometric binary
barium star (Ba star)
Bayer designation
binary black hole (BBH)
binary companion
binary neutron star (BNS)
black hole binary (BHB)
black hole merger
Black Widow Pulsar (B1957+20)
blended spectra
BPASS
brown dwarf (BD)
BSE
Burnham Double Star Catalogue (BDS)
calcium-rich gap transient (ca-rich gap transient)
Capella
Catalogue of Southern Double Stars
chemically peculiar star (CP star)
chi-squared test (χ² test)
circumbinary planet
circumstellar disk
common envelope (CE)
COMPAS
contact binary
core collapse
CRIRES
double star
double star designation
double-line spectroscopic binary (SB2)
eclipsing binary (E)
EF Eridani
ellipsoidal variable
Eta Carinae (η Car)
Evryscope
extra-solar planet
failed binary
galactic binary
GG Tau
globular cluster (GC)
gravitational wave (GW)
GRO J1655-40
Guide Star Catalog (GSC)
GW detection (GW)
hardness
HD 133131
HD 189733 b
heartbeat star
Heggie-Hills law
helium burning
high-velocity star
Hipparcos
Hulse-Taylor Binary (PSR B1913+16)
instability region
J1713+0747
Kepler Telescope
Kepler-16b
Laplace-Lagrange secular theory
LB-1
Luhman 16
Luyten 726-8
M-type star (M)
mass function
mass loss
mass ratio (μ)
mass transfer
methylidyne (CH)
multiple star system
multiplicity fraction
neutron star (NS)
neutron-star black-hole merger (NSBH merger)
optical double
orbit plot
orbital inclination
post-common-envelope binary (PCEB)
primary
probability mass function (PMF)
Procyon
proper motion (PM)
PSR J2145-0750
pulsar (PSR)
pulsar timing array (PTA)
pulsating star
radial velocity method
Roche lobe
Roemer delay
Rossiter-McLaughlin effect (RM effect)
RS Ophiuchi (RS Oph)
S-type star (S)
Scholz's Star
Sirius
solar system
spectroscopic binary (SB)
spectrum binary
star
star system
StarTrack
state of ionization
stellar activity
stellar distance determination
stellar evolution
stellar kinematics
stellar mass determination
stellar merger
stellar parameter determination
stellar population synthesis (SPS)
stripped star
subdwarf (sd)
sunspot
supernova progenitor
surface gravity (g)
symbiotic binary (SS)
T Coronae Borealis (T CrB)
T Pyxidis (T Pyx)
T Tauri
tidal capture
tomography
transient (AT)
transit
transit method
transit timing variations (TTV)
transiting planet
turn-off point (TO)
variable star
visual binary
Vogt-Russell theorem (VR theorem)
white dwarf (WD)
wide binaries (WB)
WR 140
X-ray binary (XRB)
X-ray burster (XRB)
ZTF J1539+5027

Index