Astrophysics (Index)About

potential energy

(PE)
(an object's energy that can be released)

Potential energy is energy that can be released, e.g., to apply a force over some distance, basically energy that is not kinetic energy. Everyday examples include the energy in a spring under tension, or the energy inherent in a weight some distance above the Earth, both of which have been used in mechanical clocks to provide the energy to make them run. Chemical and nuclear energy are also potential energy (or, at minimum, include some).

There is potential energy in any two objects sharing a mutual force, e.g., gravity, so the Earth's position relative to the Sun has a certain amount, or an atom's electron's position relative to the nucleus. For items attracting each other, a common convention is to list the potential energy as negative, the amount of energy required to pull them completely apart. In the case of gravity, this equals the kinetic energy the item would need to travel at escape velocity. In the case of an atom's electric force, this equals the energy necessary to ionize the atom, i.e., draw the electron completely away from the nucleus. (In both cases, the force is there at any distance, the velocity/energy is just enough to put the one item on a course where it would never slow enough to return, if there were no other influences.) This "negative energy convention" makes the sum of kinetic and potential energy constant (total energy preserved): within some system, if some potential energy is converted to kinetic energy (such as a weight gaining speed as it falls from some height), the sum of the two has not changed.


(physics,energy)
Further reading:
https://en.wikipedia.org/wiki/Potential_energy
http://hyperphysics.phy-astr.gsu.edu/hbase/pegrav.html
https://www2.tntech.edu/leap/murdock/books/v1chap6.pdf

Referenced by pages:
accretion
Bohr model
energy
entropy (S)
escape velocity (Ve)
globular cluster (GC)
gravitational collapse
gravitational potential energy
gravitational potential well
Hamiltonian
Hill stability
homologous collapse
Kelvin-Helmholtz timescale (KH timescale)
kinetic energy (KE)
magnetic reconnection
scattering
tidal Q
virial theorem
Wigner crystal

Index